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Abstract-s-So-called 'response factors' are the nux at the inside and outside surfaces of a one-dimensional
multilayered slab caused by unit triangular temperature pulses alternately applied to the inside and outside
surfaces while holding the opposite surface at constant temperature. Most recent techniques for finding
response factors involve a numerical search for the roots of the characteristic equation of the Laplace
transformed solution to the heat conduct ion equ ation. Oncc these poles are known, residue-calculus is used 10
find the inverse transform which yields response factors. This paper examines the beha vior of the characteristic
equation and related equations and presents an improved root-finding procedure which allows response

factors to be calculated efficiently.

\1''TRODUCfIOi''

• Present address: Department of Mathematics, University
ofillinois, Urbana,lL 61801, U.S.A.

Greek symbols
IX thermal diffusivity, kfpc;
p the negative of the Laplace parameter, S

I'A' r B families of curves of zeros of A(x, fl) and
B(x,fl)

p density [kg m - 3].

Subscripts
i ith layer.

(2)

(1)
1 aT(x, t)
;;-a-t-'

aT(X,l)
q(x,t) = -k~.

paper. This new procedure improves the reliability of
the method without sacrificing computational
efficiency.

In both the above relations, k,p, and cp were assumed to
be constant (we will later relax this assumption to allow
k, p, and cp to vary spatially, i.e. with x).

The response factors are defined to be the time series
of fluxes q(O, iM), q(l, itl t), i = 1,2,3, . . . which result
when unit triangular temperature pulses with base 2tll
are applied. first on the surface x = 0 and then on the
surface x = I, while the opposite surface is held at the
initi al temperature. Due to the fact that the differential
equations are linear and autonomous, the responses to
asum of pulses of various sizes and starting times can be
calculated by superposition of the standard responses
appropriately shifted and weighted. This allows the
fluxes to be calculated exactly for those surface
temperature profiles which are obt ained by linear
interpolation between the values at multiples of tlr. The
response factors can be calculated to a specified
accuracy once and for all, and then any errors in
determining the response to given surface temperature
profiles are due to the approximation by such

where T is the temperature at position x and time t, IX is
the thermal diffusivity, IX = k/pcp , k is the thermal
conductivity [W m- 1 K -l],p is density [kg m- 3] , and
cpis the 'spccific heat [J kg- 1K -1]. Theheat flux at any
position x and time t is given by:

HEAT COi"nUCfION THROUGHl\IULTILAYERED SLAns

Heat conduction through a one-dimensional
homogeneous slab isgoverned by the following second­
order partial differential equation:

"O~\E!'OCLATURE

thermal capacitance [J m -2 K -1]
specific heat [J kg- 1 K -1]
solution matrix
coefficient matrix
conductivity [W m-1 K -1]
thickness Em]
transmission matrix
integer counter
heat flux [W m - 2]
thermal resistance [m? W- I K -I]
Laplace transform variable
temperature [Oe or K]
time [s]
vector
location em].x

c
cp

F
K
k
1
At
N
q
R
s
T
t
U

THE USE of so-called 'response-factors' [I, 2] to solve
transient heat conduction problems in multilayered
slabs has increased with the development of detailed
building energy analysis computer programs [3-6].
The technique is particularly important in faithfully
characterizing the 'dynamic' response of multilayered
walls, roofs, and floors, although it need not be limited
to this application.

An important improvement in the procedure used
for calculating response factors is presented in this
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(8)

trapezoidal profiles. There are no errors arising from
making approximations to spacially dependent
temperatures such as there would be in lumped
parameter or finite difference techniques. One no
longer has to worry about the stability of numerical
methods and their convergence to genuine solutions.
The error to the method can be simply visualized as the
response to the difference between the actual surface
temp erature profiles and their trapezoidal approxi­
mations. Since temperatures are generally measured
at discrete times, the linear interpolation is one of the
more reasonable estimates for them anyway.

In practice, the fluxes are calculated recursively in
terms of previous temperatures and fluxes. The
coefficients of the recursive relations are determined
from the response factors in such a way as to minimize
the number of historical items required.

The analytical calculation of response factors is
conveniently done by using Laplace transforms on the
time variable. Because the activating triangular pulses
have initial value zero, the time derivative is expressed
by multiplication by the frequency-domain variable s.
The physical derivation of equation (1) is through the
equivalent first-order system in the pair T(x ,l) and
q(x, 1). Indeed, it is the first-order system which remains
valid when one considers more general situations in
which the coefficients k and IX become functions of x, as
we do 'in the proof of the root-separation theorem
below. The Laplace transform of this system, under the
assumption that T(x,O) = q(x, 0) = 0, is

d~:,s) = _ ~q(X,s), (3)

dq(x,s) = _ ~sT(x,s). (4)
dx IX

Ifwe assume that the wall is made oflayers on which k
and IX are constant, then in each layer, the general
solution of equations (3) and (4) is given in terms of
hyperbolic functions of IIJ(s/a), where 11are the widths
of the layers. Ifwespecify Tand q on one faceofa layer,
then they are determined throughout the layer, and, in
particular, on the other face. Since it is physically
reasonable, we require T and q to be continuous across
layer boundaries, so that the values on the second face
should be used as initial values for the next layer. Thus,
any initial values at one face of the slab are transmitted
layer-by-layer across the wall until we get values on the
other face. Because the differential equations are linear
and homogeneous, the transmission ofinitial values isa
linear transformation, given by matrix multiplication.
That is, we may claim

[
T (O,S)] = [A(S) B(S)] [T(l, S)], (5)
q(O, s) C(s) D(s) q(/, s)

for arbitrary initial values T(l, s) and q(/,s).This defines
the transmission matrix

[
A(S) B(S)]

lI1(s) = C(s) D(s)'

The reason for choosing the transmission in this

apparently backward wayisso that M(s)can be realized
as a product from left to right of transmission matrices
for the individual layers :

M(s) = M 1(s)Alis), ... , M.(s). (6)

By solving the differential equations explicitly, we find

Alj(s)=

[
cosh [lIJ(s/elj)] [1/kIJ(s/a-;)] sinh [IIJ(S/el l )] ]

[kjJ(S/lX j)] sinh [lIJ(S/lXj) ] cosh [lIJ(S/el/)] ,

(7)

where k, and lXi are the thermal conductivity and
thermal diffusivity of the layer, respectively. The matrix
entries are called transfer functions.

Our goal is to relate temperature inputs to flux
outputs, not, as equation (5)might seem to indicate, to
relate a temperature and flux on one side ofthe slab to
that on the other. We view equation (7)as a necessary
condition on the transforms ofthefunctions involved in
the problem at hand. We continue with the customary
procedures of Laplace transform technique: solve for
the transforms of the outputs in terms of those of the
inputs, calculate the inverse transforms, and verify that
the infinite series so obtained converge to actual
solutions of the original differential equations and
boundary conditions. To describe all .of these
procedures in detail would make a rather lengthy
technical treatise, but would involve only modifications
of matters adequately covered in elementary tests on
transform method s.The solution for flux transforms is
given by

[
q(O,S)] = r~~;~ .- B~S) ] [T(O,$)].
q(l, s) 1 A(s) T(l, s)

B(s) - B(s)

To calculate response factors, the technique of residue­
calculus inversion of the transforms is used. The poles
involved come from whatever we choose for T(O,s) or
T(l,s) and from the zeros of B(s). In the course of our
proofbelow that the zeros of A(s)and B(s)separate each
other, we show that the zeros of B(s) are negative and
simple. When T(s) is a triangular pulse transform, its
only pole is a double pole at s = O. Note that due to the
form of equation (8), the two cross response factor
series, relating temperature on one side to flux on the
other, are negatives of each other.

It is convenient to set s = - P, so that for the purpose
ofcalculating roots,p isa positive real number. It is also
convenient to use thermodynamic resistance and
capacitance as the characteristic properties of each
layer. These are defined to be R, = IJk jand C, = liPjCpj.
Using this notation, the transmi ssion matrix for a layer
becomes

[
cosJ(PRC) [R/J(PRC)] SinJ(PRC)]

- [J(fJRC)/R] sin J({JRC) cosJ(fJRC) .

When a layer has negligible heat capacity compared to
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its resistance, it is a reasonable simplification to take the
limit as C --. 0, so that the matrix is

For cases involving three or more layers, elements of
the transmission matrix are complicated products and
sums of the transfer functions for each layer [see
equation (12)]. Therefore, in practice, the roots of B(P)
are found by numerical search. The procedure used was
to scan an interval between 0 < P~ Pm.. in steps,
evaluating B(P)at each step (see Fig. I). The occurrence
ofa sign change in B(P)between steps indicated that a
root had been bracketed. Figure 1 shows B(fJ) as a
function of fJ for a simple one-layer case. The change in
sign of B(P)between P2 and P3 brackets the first root of
B(P)(the step size has been exaggerated for the purpose
of illustration).

Once a root was bracketed, a secant-method, root­
finding procedure was used to pinpoint the value of fJ
where B(P)= O. (See Hittle [7] for a more detailed
discussion of response factor methods.)

For certain slabs, the roots of B(P) occur in pairs
which are extremely close together (of the order of 10- 8

apart). Figure 2 shows two such cases, both of which
can be realized by heavy concrete layers with an
intermediate layer of insulation. The deficiency of the
above procedure, when applied to cases like those of
Fig. 2,was that it would step over pairs of roots without
detecting a sign change in B(fJ). The fact that roots had
been missed was detected by an energy conservation
check, but missed pairs of roots could not be found
without resorting to time-consuming scans with
extremely small steps.

A new procedure for finding the roots of B(P) has
been developed based on the discovery that the roots of

the transfer function B(P)are separated by roots of the
transfer function A(P). This procedure will now be
presented; in the next section, we give a proof of the
root-separation theorem. It has been implemented in a
research version of BLAST [5] by G. Walton of NBS
who has made tests of its speed and efficiency which
verify that it does indeed give a substantial im­
provement [8].

We first note that, for each step along the Paxis, A(P)
was being evaluated each time B(fJ) was evaluated. This
was a natural consequence of the matrix multipli­
cations necessary to calculate B(P). We begin the new
search algorithm in the same way as before-stepping
along the fJ axis looking for changes in sign in B(P).
However, we also keep track of the sign of A(fJ) using a
counter N, which is the number of sign changes in A(fJ)
since a root of B(P)was found. When N = 2 is detected,
it is known that two roots of B(P) have been jumped
over. When this occurs, a secant-method, root-finding
algorithm is used to locate the root of A(P), but only
with enough accuracy to bracket the missing roots of
B(P)·

Figure 3 will help make this procedure clear. Figure
3(a) and (b) are sample plots of B(fJ) and A(fJ) for the
same multilayer slabs as in Figs. 2(a) and (b).The scales
have changed to accommodate the plotting of A(P).
Figures 3(a) and (b) clearly show how the roots of A(P)
separate the roots of B(P).

Figure 3(c)is an exaggerated view of one of the 'bad'
regions of the locus of B(P), showing how the new search
algorithm isolates the roots of B(P). Wedenote as PI the
value of Pat which we evaluate A(P)and B(P)prior to
the occurrence of the pair of roots of B(P). fJ2 is one step
further along the axis. By referring to Fig. 3(b), we see
that there has been one sign change in A(P)between the
last root of B(fJ) and PI; hence, N = 1 at Pl'Another

J
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FIG. I. Locus of B(jJ) for a homogeneous slab.
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FIG . 2. Locus of B(PI for selected three-layer slabs .

sign change occurs in A(fJ) between PI and P2 ;hence, N
= 2 at fJ2' and we know we have missed two roots of
B(fJ). We now begin the secant-method search for the
root of A(P), using PI and P2 as starting values. At each
iteration of the search, wecheck the signof B(fJ). As soon
as B(fJ) changes sign [at P' in Fig. 3(c),for example], we
can stop searching for the root of A(fJ), since we have
bracketed the roots of B(fJ). We need not find the root of
A(P)exactly. We now invoke the secant-method root­
finder two more times using PI and P', and P' and P2 as
starting points to find the desired roots of B(P).

A final important step isto record the sign of A(fJ) at
the right-most root of B(fJ), at P" in Fig. 3(c), and reset N
to zero . We then proceed with our stepwise search for
more roots , beginning at P2-

There are a number of other possible relationships
between the search points (denoted as Pt and fJ2) and
the zero-crossings of A(P)and B(P),so that the handling
of N req uires some care. Figure 4 shows an exaggerated
view of the possibilities and explains the procedures
used in each case.

the x-p plane, denoted A(x,P) B(x,P). We gain some
generality with no additional effort by allowing the
physical quantities of the system to be piecewise
differentiable functions of x, rather than piecewise
constant, since they are usually taken for multilayered
slabs. It is convenient to let rex) = Ifk(x), where k(x) is
the conductivity at x, and c(x) = p(x)cp(x), where p(x)
and cp(x)are the density and specific heat at x.Then we
can obtain overall resistances and capacitances by
integrating rex)and c(x).

The transformed differential equations-equations
(3)and (4)-can be written in matrix form in terms of the
column

U(x, fJ) = [T(X, f1)J
q(x,P)

and the coefficient matrix

, [ 0
Kix, f1) = fJc(x)

as

The general solution of equation (9) is commonly

PROOF OF TilE SEPARATIO:-; OF ROOTS

To prove that the zeros of A(fJ) and B(fJ) separate
each other, we consider extensions of these functions to

dU~:,P) = K(x,fJ)U(x,f1). (9)
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FIG. 3. Locus of A(P) and B(JJ) for selected three-layer slabs.

Then the general solution for a column vector U(x, fJ) is
given in terms of the initial value U(O, fJ) by

expressed in terms of the fundamental 2 x 2 matrix
solution F{x, fJ), defined as the solution of the initial
value problem

dF
F(O,fJ) = I, dx = KF. (10)

with the trace of the coefficient matrix as its coefficient:

d
- det F = (trK) det F.
dx

In the case at hand, trK = 0 and we conclude that
det F = 1 constantly.

We let the inverse matrix of F be M, so that from
equation (11)

U(x, fJ) = F(x, f3)U(O, P)· (11) U(O, fJ) = M(x, f3)U(x, /3). (12)

It is a standard theorem about matrix differential
equations, related to Abel's theorem on the Wronskian,
that the determinant of a solution satisfies a DE too,

Ifwe compare this with equation (5),which defined the
matrix, wecalled M(s),weconclude that M{s) = M{l, fJ),
because in both cases, the equation must hold for

H.'fr 26:11-8
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I. N'I AT f31

2. SIGN OF B(f3) CHANGES BETWEEN f31 AND /32 i
HENCE FIND f3',THE ROOT OF B(,8I.

3. RECORD SIGN OF A(f3 II. SET N'O.

4. CONTINUE STEP SEARCH BEGINNING AT f32'
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2. SIGN OF B(SI CHANGES BETWEEN ,81AND /32;

HENCE FIND ,81, THE ROOT OF B(,8t

3. NOTE SIGN CHANGE IN A 1,8) BETWEEN ,81

AND (3z. SET N'I.

4. CONTINUE STEP SEARCH BEGINNING AT S2'

I. N'OAT f31

2. SIGN OF B(J3) CHANGESBETWEEN f31 AND f32;
HENCE FIND /31• THE ROOT OF B(,8I.

3. RECORD SIGN OF Al.8'I. SET N=O.

4. CONTINUE STEP SEARCH BEGINNINGAT .82.

--
I. N'O AT f31

2. SIGN OF Blf3) CHANGES BETWEEN .81 AND,82; HENCE

FINO ,81 THE ROOT OF Bl,8).

3. NOTE SIGN CHANGE IN AISI BETWEEN,81 AND .82.

SET N'1.

4. CONTINUE STEP SEARCH BEGINNING AT .82'

\s----, (

FIG. 4. Possible relationships between roots of A(P) and B(P).

arbitrary values of the column U(l,P). Hence, denoting complex conjugates, we have
the entries of M(x, fl) by A(x, fl), B(x, fl), C(x, fl), and I' I'
D(x, fl), we get the desired extensions of A(f3) and B(f3) to fl 0 c(x)f(x)f(x) dx = 0 g'(x)f(x) dx
the x-fl plane. Since det M = I, the formula for F is

We are now in a position to prove that the zeros of
B(f3) are positive (5 is negative). Let fl be any complex
number and suppose we have B(f3) = O. Let f(x) =

- B(x, P), g(x) = A(x, P), so that these are the possibly­
complex-valued functions which form the second
column of F(x,fJ). By equation (10) we have f(O) = 0,
f'(x) = -r(x)g(x), and g'(x) = flc(x)f(x). We have
assumed that f(l) = O. Using an overbar to denote

[
D(x,fl)

F(x, fl) = _ C(x,fl)
-B(X,fl)].
A(x, fl)

(13) = g(l)f(l) - g(O)f(O) - f~ j'(x)g(x) dx

= f~ r(x)g(x)g(x) dx. (14)

This shows that fl is the quotient of the two positive
integrals appearing in equation (14).

Ifone row of a matrix iszero, then the determinant is
zero. Since det M = I, we conclude that A(x.fl) and
B(x.fl) cannot be zero simultaneously. If we were to
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assume that r(x) and c(x)are continuous and never zero,
then it would follow immediately from Rolle's theorem
and equation (10) that as x varies, for fl constant, the
zeros of B(x, f1) and A(x, fl) alternate, separating each
other. When we allow c(x) to be zero on a whole
interval, then it is possible for A(x, fl) to vanish on such
an interval too. However, ifwecount such an interval of
zeros ofA(x, fl) asjust a special sort ofsingle zero, then it
is still true that the zeros ofB(x, fl) and A(x, f3) alternate.
The proof is a technicality which is designed to get
around the use of Rolle's theorem, and we will not give
all the details here. The idea is that between two zeros of,
say, B(x),B(x) must first rise, then fall, or vice versa so
that its derivative must have points in such an interval
where it is opposite in sign. By the differential
equation (10),the other function A(x) must also change
sign, so that it is zero some place in between. Figure 5
shows typical behavior of A(x) and B(x) with r(x) and
c(x)constant on each of three segments, with c(x) = 0 in
the middle.

Thus, the zeros of A(x, f3) and B(x, fl) separate each
other when fl is constant. We must now show that they
separate each other when x is constant and fl varies. We
define families of curves in the x-f3 plane called r A and
FB' where A(x, fl) = 0 and B(x, fl) = 0, respectively. The
separation properties these curves have in the x­
direction would do no good if the curves had a Z
shape as pictured in Fig. 6. But this behavior is not
possible because the curves F A and r B always have
nonpositive slope. The fact that the zeros of B(f3) are
simple is a consequence, since the vertical line x = 1
must meet the curves FB with simple crossings, not
tangentially.

Wecalculate the slopes ofFA and r B by using implicit
differentiation on the defining equations A(x,fl) = 0
and B(x, f3) = O. Thus, d{J/dx = - AJAp on F A' and

dfl/dx = -BJBp on FB' where the subscripts denote
partial derivatives. To get the necessary information
about Ap and Bp, we use the fact that they must satisfy
differential equations and initial conditions which we
get from differentiating equation (10)with respect to p.
Ifwe let G(x, f3) = Fp(x,f1), then the DE satisfied by Gis

dG
dx = KG+KpF. (15)

The method of variation of parameters leads to the
following integral expressions for Apand Bp, which can
be verified as solutions directly

Ap(x,f3) = -A(x) J: c(u)B(u)D(u) du

+C(x) J: c(U)B(U)2 du,

Bp(x,{J) = -B(x) J: c(u)B(u)D(u) du

+D(x) J: c(U)B(U)2 duo

In these formulas we have abbreviated A(x,P) and
B(x, fl) to A(x) and B(x). Along the curves TA' we have
A(x) = 0 and C(x) = I/B(x), so that the first integral
drops out and Ap reduces to Ap(x,{J) = -H(x)/B(x),
where H(x) is the positive integral

H(x) = f: c(U)B(U)2 duo

Then we have dfl/dx = -{Jc(X)B(X)2/H(x) ~ O. Simi­
larly, along the curves r B' we have D(x) = 1/A(x) and
dfl/dx = -r(X)A(X)2/H(x) ~ O.

2.
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FIG.5. Locus of A(x,P) and B(x,P) for constant p.
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FIG. 6. Impossible Z-shape for r A and r B curves.

The picture which has evolved is this (seeFig. 7).Each
connected curve of the family of r A and/or TB divides
the strip 0 < x ~ 1, 0 < Pinto an upper and a lower

part. In the band between two successive I'B there isjust
one r A curve and vice versa. Since these alternating
curves terminate on the vertical line at x = I, roots of
B(I,p) = 0 are separated by roots of A(I, p) = 0 and vice
versa.

CO~CLUSIO:"S

A significant improvement to the procedure for
finding the roots of the characteristic equation used in
calculating response factors has been developed. The
improvement eliminates the need for an extremely fine
step size when numerically searching for roots and
ensures that roots will not be missed. The new
procedure allows the calculation of response factors for
certain multilayered slabs which previously could only
be found with unrealistically small search increments.
Computational efficiency has been retained while
improving reliability.

R2/RI = RES RATI0=.900

..JR;C; / .fR3C3 = FREQ RATIO=I.028

.4

.3

.2

.1

\
\
\
-,

<,
<,

-~-----
-- ...... ............---------

~I

.25.2

x (METERS)

.1 .15.05

,.
.0 ....._-.....,j~--.....,j~---'-----..I._-_.....

O.

FIG. 7. r:. and r II as functions of x and p.
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UNE PROCEDURE DE RECHERCHE DES RACINES POUR LE CALCUL DES FLUX
THERMIQUES A TRAVERS DES PLAQUES A PLUSIEURS COUCHES

Resume-Des "facteurs de reponse" sont les Ilux aux surfaces d'entree et de sortie d'une plaque multicouche
monodimensionnelle causes par des impulsions triangulaires de temperature appliquees alternativement aux
surfaces d'entree et de sortie, en maintenant la surface opposee a une temperature constante. Des techniques
recentes pour trouver les facteurs de reponse passent par une recherche nurnerique des racines de l'equation
caracteristique de la transformee de Laplace de la solution de l'equation de la conduction thermique. Une fois
que ces poles sont connus, Ie calcul des residus est utilise pour trouver la transformee inverse qui conduit aux
facteurs de reponse, Cet article examine Ie comportement de l'equation caracteristique et des equations
associees et il presente une procedure arnelioree de recherche des racines qui donne rapidement les facteurs de

reponse,

EINE VERBESSERTE METHODE ZUM AUFFINDEN VON LOSUNGEN BEl DER
INSTATIONAREN WARMELEITUNG IN VIELSCHICHTIGEN PLATTEN

Zusammenfassung-Dersogenannte Reaktionsfaktorist die Warmestromdichte an derinneren und au[leren
Oberlliiche einer eindimensionalen vielschichtigen Platte, die durch dreiecksformige Einheits­
temperaturspriinge an der inneren und au[leren Oberflache hervorgerufen wird, wahrend man die
gegeniiberliegende Flache auf konstanter Ternperatur halt. Die meisten herkornmlichen Methoden zum
Bestimmen von Reaktionsfaktoren erfordem numerisches Suchen der Wurzeln der charakteristischen
Gleichung der Laplace-transformierten Losung der Warmeleitungsgleichung. Wenn diese Polstellen bekannt
sind, wird die Residuenrechnung zur Ermittlung der inversen Transformierten angewendet, welche die
Reaktionsfaktoren enthalt. Die Veriilfentlichung behandelt das Verhalten der charakteristischenGleichung
und der zugehorigen Beziehungen und gibt eine verbesserte Methode zum Auffinden der Losung an, mit

welcher Reaktionsfaktoren effizient berechnet werden konnen,

YCOBEPlllEHCTBOBAHHMI npOUE.D.YPA OnPE.D.EREHlUI KOPHEfI,
HCnORb3YEMASl nPH PAC4ETE HEYCTAHOBHBlllErOCJl TEnROBOrO

nOTOKA 4EPE3 MHOrOCJIOHHbIE nJIHTbI

AIlHoraUHH-TaK Ha3hIBaeMbI~1II "epaKTopa~1II OTKJIIIKa" IIBJI II IOTCII nOTOKII ua anyrpeuaeli II
aueumen nOBepXUOCTIIX onuosrepnoll MIlOrOcJIoiiHOii nJIIlTbI, otiycnaennaaesrsre ellllHII'IUblMII
rpeyrom.nuv« restneparypauxm lI~mYJIhCa~III, npunaraesrsnrn nonepesrenno K nnyrpemrell II
aneumen 1l0BepXHOCTII~I,npuxext llpOTlIBOnOJIO)l(Hall nOBepXUOCTh nonaepxnaaercs npn nOCTOIlHHOii
Te~mepaTYpe. Hoaetlume MeTOJIbI onpeneneans epaKTopoB OTKJIIIKa BKJIIO'IaIOT '1I1CJIellllblii nOIlCK
xopneil xapaKTepllCTII'IeCKOrO ypaauenns Mil npeofipaaosaaaoro no Jlannacy peweHIIH ypaaaenna
TenJIOnpOBollHOCTII. Ilocne onpeneneuna nO,lIOCOB c noxrouu.io xrerona BhI'IeTOB naxonntcs ofiparuoe
npcotipaaoaanne, xoropoe naer epaKTopbl OTKJIIIK:l. Flposenea aHa..1113 1l0BeneHII1I xapaKTepllCTII'IeCKOrO
ypaanenua II J1PYfllx caaaauuux c 1II1~1 ypaaaenntl II npennoxen ycosepiuencraoaaauull MeTOJI

onpenenenns xopaefi, xoroputl 11mBO.111eT JepepeKTIIBllo paccsuruears epaKTopbl OTKJIlIKa.




