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Abstract—So-called ‘response factors’ are the flux at the inside and outside surfaces of a one-dimensional
multilayered slab caused by unit triangular temperature pulses alternately applied to the inside and outside
surfaces while holding the opposite surface at constant temperature. Most recent techniques for finding
response factors involve a numerical search for the roots of the characteristic equation of the Laplace
transformed solution to the heat conduction equation. Once these poles are known, residue-calculusis used to
find the inverse transform which yields responsefactors. This paper examines the behavior of the characteristic
equation and related equations and presents an improved root-finding procedure which allows response
factors to be calculated efficiently.

NOMENCLATURE
C thermal capacitance [J m~2 K~1]
, specific heat [J kg~ ! K]
F solution matrix
K coefficient matrix
k conductivity [Wm~™1 K~1]
l thickness [m]
M transmission matrix
N integer counter
q heat flux [W m~2]
R thermal resistance [m2 W~ K~1]
s Laplace transform variable
T temperature [°C or K]
t time [s]
U vector
location [m].
Greck symbols
o thermal diffusivity, k/pc,
B the negative of the Laplace parameter, s
I',, Ty families of curves of zeros of A(x, ff) and
B(x, f3)
p density [kg m™3].
Subscripts
i ith layer.

INTRODUCTION

THE UsE of so-called ‘response-factors’ [1, 2] to solve
transient heat conduction problems in multilayered
slabs has increased with the development of detailed
building energy analysis computer programs [3-6].
The technique is particularly important in faithfully
characterizing the ‘dynamic’ response of multilayered
walls, roofs, and floors, although it need not be limited
to this application.

An important improvement in the procedure used
for calculating response factors is presented in this

* Present address : Department of Mathematics, University
of lllinois, Urbana, IL 61801, US.A.

paper. This new procedure improves the reliability of
the method without sacrificing computational
efficiency.

HEAT CONDUCTION THROUGH MULTILAYERED SLABS

Heat conduction through a one-dimensional
homogeneousslabis governed by the following second-
order partial differential equation:

9*T(x,1) _ 1 3T(x,1)
ax? T a at

) M

where T is the temperature at position x and time t, a is
the thermal diffusivity, « = k/pc,, k is the thermal
conductivity [Wm ™! K~1], pis density [kgm~3],and
c,isthespecificheat [Jkg ™! K~ ']. The heat flux atany
position x and time ¢ is given by:

0T(x,1)

q(x,t) =—k ax

0
Inboththeaboverelations, k, p,and ¢, were assumed to
be constant (we will later relax this assumption to allow
k, p, and ¢, to vary spatially, i.e. with x).

The response factors are defined to be the time series
of fluxes q(0,iAt), q(l,iAr), i = 1,2,3,... which result
when unit triangular temperature pulses with base 2At
are applied first on the surface x = 0 and then on the
surface x = /, while the opposite surface is held at the
initial temperature. Due to the fact that the differential
cquations are linear and autonomous, the responses to
asum of pulses of varioussizes and starting times can be
calculated by superposition of the standard responses
appropriately shifted and weighted. This allows the
fluxes to be calculated exactly for those surface
temperature profiles which are obtained by linear
interpolation between the values at multiples of At. The
response factors can be calculated to a specified
accuracy once and for all, and then any errors in
determining the response to given surface temperature
profiles are due to the approximation by such
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trapezoidal profiles. There are no errors arising from
making approximations to spacially dependent
temperatures such as there would be in lumped
parameter or finite difference techniques. One no
longer has to worry about the stability of numerical
methods and their convergence to genuine solutions.
Theerror to the method can be simply visualized as the
response to the difference between the actual surface
temperature profiles and their trapezoidal approxi-
mations. Since temperatures are generally measured
at discrete times, the linear interpolation is one of the
more reasonable estimates for them anyway.

In practice, the fluxes are calculated recursively in
terms of previous temperatures and fluxes. The
coefficients of the recursive relations are determined
from the response factors in such a way as to minimize
the number of historical items required.

The analytical calculation of response factors is
conveniently done by using Laplace transforms on the
time variable. Because the activating triangular pulses
have initial value zero, the time derivative is expressed
by multiplication by the frequency-domain variable s.
The physical derivation of equation (1) is through the
equivalent first-order system in the pair T(x,t) and
q(x, ). Indeed, it is the first-order system which remains
valid when one considers more general situations in
which the coefficients k and « become functions of x, as
we do ‘in the proof of the root-separation theorem
below. The Laplace transform of this system, under the
assumption that T(x,0) = ¢(x,0) =0, is

dT(x, 1

e ®
dq(x,s) k
T = — ;ST(X, S). (4)

Ifwe assume that the wallis made oflayers on which k
and « are constant, then in each layer, the general
solution of equations (3) and (4) is given in terms of
hyperbolic functions of I,-\/(s/a), where [; are the widths
of the layers. If we specify T and q on one face of a layer,
then they are determined throughout the layer, and, in
particular, on the other face. Since it is physically
reasonable, we require T and g to be continuous across
layer boundaries, so that the values on the second face
should be used as initial values for the next layer. Thus,
any initial values at one face of the slab are transmitted
layer-by-layer across the wall until we get values on the
other face. Because the differential equations are linear
and homogeneous, the transmission of initial valuesisa
linear transformation, given by matrix multiplication.
That is, we may claim

[T(O, s)] _ [A(s) B(s)] |:T(I, s)] )
4(0,5) Cis) D(s)][ qlhs) |
for arbitrary initial values T'(/, s) and g(l, s). This defines
the transmission matrix

A(s) B(s)]

M(s) =[C(s) b |

The reason for choosing the transmission in this
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apparently backward wayisso that A(sjcan berealized
as a product from left to right of transmission matrices
for the individual layers:

M(s) = M ()M (s), ..., M,(s). ©)
By solving the differential equations explicitly, we find
Ms) =

cosh [li/(s/2)]  [1/ki/(s/a)] sinh [\ /(s/ 0!:)]]
[ki\/ (/)] sinh Ui\/ (s/a;)] cosh [fi\/ (s/«)] ’

™

where k; and «; are the thermal conductivity and
thermal diffusivity of the layer, respectively. The matrix
entries are called transfer functions.

Our goal is to relate temperature inputs to flux
outputs, not, as equation (5) might seem to indicate, to
relate a temperature and flux on one side of the slab to
that on the other. We view equation (7) as a necessary
condition on the transforms of the functions involved in
the problem at hand. We continue with the customary
procedures of Laplace transform technique: solve for
the transforms of the outputs in terms of those of the
inputs, calculate the inverse transforms, and verify that
the infinite series so obtained converge to actual
solutions of the original differential equations and
boundary conditions. To describe all of these
procedures in detail would make a rather lengthy
technical treatise, but would involve only modifications
of matters adequately covered in elementary tests on
transform methods. The solution for flux transforms is
given by

D(s) 1
[q(O, s):l _| BO " B(s) [T(O, s):l ®
q(l, s) 1 A(s) Td,s) |
Bis)  Bls)

To calculate response factors, the technique of residue-
calculus inversion of the transforms is used. The poles
involved come from whatever we choose for T(0, s) or
T(l,s) and from the zeros of B(s). In the course of our
proofbelow that the zeros of A(s)and B(s)separate each
other, we show that the zeros of B(s) are negative and
simple. When T(s) is a triangular pulse transform, its
only poleis a double pole at s = 0. Note that due to the
form of equation (8), the two cross response factor
series, relating temperature on one side to flux on the
other, are negatives of each other.

Itisconvenient tosets = — f§,so thatfor the purpose
of calculatingroots, fis a positive real number. Itis also
convenient to use thermodynamic resistance and
capacitance as the characteristic properties of each
layer. These are defined tobe R; = I /k;and C; = lip;c,.
Using this notation, the transmission matrix for a layer
becomes

[ c0s/(BRC) [R/J/(BRC)] sin J(ﬁRC):I
—[(BRC)/R] sin J(BRC) cos/(BRC) '

When a layer has negligible heat capacity compared to



Root-finding procedure in multilayered slabs

itsresistance, itisareasonable simplification to take the
limit as C — 0, so that the matrix is

o 1l

For cases involving three or more layers, elements of
the transmission matrix are complicated products and
sums of the transfer functions for each layer [see
equation (12)]. Therelore, in practice, the roots of B(f)
are found by numerical search. The procedure used was
to scan an interval between 0 < 8 < B.... in steps,
evaluating B(f) at each step (see Fig. 1). The occurrence
of a sign change in B(B) between steps indicated thata
root had been bracketed. Figure 1 shows B(f) as a
function of 8 for a simple one-layer case. The change in
sign of B(f) between 8, and f3; brackets the first root of
B(p)(the step size has been exaggerated for the purpose
of illustration).

Once a root was bracketed, a secant-method, root-
finding procedure was used to pinpoint the value of §
where B(f)) = 0. (See Hittle [7] for a more detailed
discussion of response factor methods.)

For certain slabs, the roots of B(ff) occur in pairs
which are extremely close together (of the order of 108
apart). Figure 2 shows two such cases, both of which
can be realized by heavy concrete layers with an
intermediate layer of insulation. The deficiency of the
above procedure, when applied to cases like those of
Fig. 2, was thatit would step over pairs of roots without
detecting a sign change in B(f). The fact that roots had
been missed was detécted by an energy conservation
check, but missed pairs of roots could not be found
without resorting to time-consuming scans with
extremely small steps.

A new procedurc for finding the roots of B(B) has
been developed based on the discovery that the roots of
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the transfer function B(f) are separated by roots of the
transfer function A(B). This procedure will now be
presented; in the next section, we give a proof of the
root-separation thecorem. It has been implemented ina
research version of BLAST [5] by G. Walton of NBS
who has made tests of its speed and efficiency which
verify that it does indeed give a substantial im-
provement [8].

We first note that, for each step along the f axis, A(f)
was being evaluated each time B(f) was cvaluated. This
was a natural consequence of the matrix multipli-
cations necessary to calculate B(f). We begin the new
search algorithm in the same way as before—stepping
along the f axis looking for changes in sign in B(f).
However, we also keep track of the sign of A(f) usinga
counter N, which is the number of sign changes in A(f)
since a root of B(f) was found. When N = 2is detected,
it is known that two roots of B(ff) have been jumped
over. When this occurs, a secant-method, root-finding
algorithm is used to locate the root of A{(f), but only
with enough accuracy to bracket the missing roots of
B(p).

Figure 3 will help make this procedure clear. Figure
3(a) and (b) are sample plots of B(ff) and A(f) for the
same multilayer slabs as in Figs. 2(a) and (b). The scales
have changed to accommodate the plotting of A(f).
Figures 3(a) and (b) clearly shqw how the roots of A(f)
separate the roots of B(f).

Figure 3(c}is an exaggerated view of one of the ‘bad’
regions of thelocus of B(f}), showing how the new search
algorithmisolates the roots of B(8). Wedenote as 3, the
value of 8 at which we evaluate A(f) and B(f) prior to
the occurrence of the pair of roots of B(f). 8, is one step
further along the axis. By referring to Fig. 3(b), we see
that there has been one sign change in A(ff) between the
last root of B(f) and f§,; hence, N = [ at f§;. Another
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R= .l
075 |- C= 200000
05 -
B(S3)
025 - :
I
I
P\ VB VB B TN
o] L il le R =
B VB2 \/ \_/
_.025 ] 1 ] ! O |
0. 02 04 086 .08 J

F1G. 1. Locus of B(f) for a homogeneous slab.
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F1G. 2. Locus of B(f) for selected three-layer slabs.

sign change occursin A(f) betwéen §, and 8, ;hence, N
= 2 at §,, and we know we have missed two roots of
B(p). We now begin the secant-method search for the
root of A(f), using f, and B, as starting values. Ateach
iteration of the search, we check the sign of B(8). Assoon
as B(f}) changes sign [at §’in Fig. 3(c), for example], we
can stop searching for the root of A(f), since we have
bracketed the roots of B(f8). We need not find the root of
A(P) exactly. We now invoke the secant-method root-
finder two more times using 8, and #',and §’ and 3, as
starting points to find the desired roots of B(f).

A final important step is to record the sign of A(B) at
the right-most root of B(f),at 8”in Fig. 3(c),and reset N
to zero. We then proceed with our stepwise search for
more roots, beginning at §,.

There are a number of other possible relationships
between the search points (denoted as f#, and f8,) and
the zero-crossings of A(f) and B(f),so that the handling
of N requires some care. Figure 4 shows an exaggerated
view of the possibilities and explains the procedures
used in each case.

PROOF OF THE SEPARATION OF ROOTS

To prove that the zeros of A(f) and B(f) separate
each other, we consider extensions of these functions to

the x~f plane, denoted A(x, f) B(x, ). We gain some
generality with no additional effort by allowing thg
physical quantities of the system to be piecewise
differentiable functions of x, rather than piecewise
constant, since they are usnally taken for multilayered
slabs. It is convenient to let r{x) = 1/k(x), where k(x) is
the conductivity at x, and ¢(x) = p(x)c(x), where p(x)
and c,(x) are the density and specific heat at x. Then we
can obtain overall resistances and capacitances by
integrating r(x) and c¢(x).

The transformed differential equations—equations
(3)and (4)—can be writteninmatrix formin terms of the
column

T(x, B)]

U B) = [q(x B

and the coefficient matrix
o —r(x)
K(x’ﬁ) - [ﬂc(x) 0 ]

dU(x, B)
dx

as
= K(x, B)U(x, B). ®

The general solution of equation (9) is commonly
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Fi1G. 3. Locus of A(B) and B(f) for selected three-layer slabs.

expressed in terms of the fundamental 2 x 2 matrix
solution F{x, B), defined as the solution of the initial
value problem

dF

FOp =1, —=

KF,
dx F

(10)

Then the general solution for a column vector U(x, f) is
given in terms of the initial value U(0, B) by

Ulx, p) = F(x, HU(O, ). (1)

It is a standard theorem about matrix differential
equations, related to Abel’s theorem on the Wronskian,
that the determinant of a solution satisfies a DE too,

HMT 26:11-H

with the trace of the coefficient matrix as its coefficient :

—d— det F = (¢rK) det F.
dx

In the case at hand, rK = 0 and we conclude that
det F = 1 constantly.

We let the inverse matrix of F be M, so that from
equation (11)

U(o, B) = M(x, )U(x, ). (12)

If we compare this with equation (5), which defined the
matrix, we called M(s), we conclude that M(s) = M(1, B),
because in both cases, the equation must hold for
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A(B)
e

8(8)

I Nzl AT B

2. SIGN OF B{f3) CHANGES BETWEEN 8| AND B3 ;
HENCE FIND B',THE ROOT OF B(B).

3.RECORD SIGN OF A(B'), SET N:=0.

4. CONTINUE STEP SEARCH BEGINNING AT B3.

N .
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v
~
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2. SIGN OF B{B) CHANGES BETWEEN Bl AND BZ;
HENCE FIND B', THE ROOT OF 8(S).
3. NOTE SIGN CHANGE IN A({B) BETWEEN 8’
AND B2, SET Nzl
4, CONTINUE STEP SEARCH BEGINNING AT B3.
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F1G. 4. Possible relationships between roots of A(8) and B(f).

arbitrary values of the column U(l, f§). Hence, denoting
the entries of M(x, f) by A(x, p), B(x, ), C(x,p), and
D(x, ), we get the desired extensions of A(f8) and B(f}) to
the x—p plane. Since det M = 1, the formula for F is

D(x,f) —B(x,ﬁ’):l
—C(x.p)  Alxp) |

We are now in a position to prove that the zeros of
B(p) are positive (s is negative). Let § be any complex
number and suppose we have B(ff) =0. Let f(x) =
- B(x, B), g(x) = A(x, B), so that these are the possibly-
complex-valued functions which form the second
column of F(x, f). By equation (10) we have f(0) =0,
J'(x) = —r(x)g(x), and g'(x) = Pe(x)f(x). We have
assumed that f{l) = 0. Using an overbar to denote

F(x,p) = [ (13)

complex conjugates, we have

! - i P
ﬂj (x)f(x)f(x) dx = J g'(x)f(x) dx

[¢] 0

S
= g0/ () —g(0)f(0) — L S’ (x)g(x) dx

1
= L rx)g(x)g(x) dx. (14)
This shows that § is the quotient of the two positive
integrals appearing in equation {14).

If one row of a matrix is zero, then the determinant is
zero. Since det M = 1, we conclude that A(x, ) and
B(x, B) cannot be zero simultaneously. If we were to
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assume that r(x) and ¢(x)are continuous and never zero,
then it would follow immediately from Rolle’s theorem
and equation (10) that as x varies, for § constant, the
zeros of B(x, §) and A(x, f) alternate, separating each
other. When we allow ¢(x) to be zero on a whole
interval, then it is possible for A(x, f) to vanish on such
aninterval too. However, if we count such aninterval of
zeros of A(x, f)asjust aspecial sort of single zero, then it
is still true that the zeros of B(x, f)and A(x, ) alternate.
The proof is a technicality which is designed to get
around the use of Rolle’s theorem, and we will not give
allthe details here. Theideais that between two zeros of,
say, B(x), B(x) must first rise, then fall, or vice versa so
that its derivative must have points in such an interval
where it is opposite in sign. By the differential
equation (10), the other function A(x) must also change
sign, so that it is zero some place in between. Figure 5
shows typical behavior of A(x) and B(x) with r(x) and
c(x)constant on each of three segments, with ¢{x) = 0in
the middle.

Thus, the zeros of A(x, 8) and B(x, ) separate each
other when f is constant. We must now show that they
separateeach other when x is constant and f varies. We
define families of curves in the x—f plane called ', and
I'p, where A(x, f) = 0and B(x, f) = 0, respectively. The
separation properties these curves have in the x-
direction would do no good if the curves had a Z
shape as pictured in Fig. 6. But this behavior is not
possible because the curves I', and I'y always have
nonpositive slope. The fact that the zeros of B(f) are
simple is a consequence, since the vertical line x =/
must meet the curves I'p with simple crossings, not
tangentially.

Wecalculate the slopesof I' , and 'y by using implicit
differentiation on the defining equations A(x,f) =0
and B(x,f) = 0. Thus, df/dx = —A4,/4; on T, and

A(x,) and o
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dp/dx = —B,/B on I'p, where the subscripts denote
partial derivatives. To get the necessary information
about Az and By, we use the fact that they must satisfy
differential equations and initial conditions which we
get from differentiating equation (10) with respect to 8.
If welet G(x, ) = Ffx, f§), then the DE satisfied by G is

dG

i KG+KgF.
The method of variation of parameters leads to the
following integral expressions for Azand By, whichcan
be verified as solutions directly

(15

(*x

Ay(x,p) = —Alx) . (u)B(u)D(u) du

" W)B()? du,

JO

+C(x)

By(x, ) = —B(x) :c(u)B(u)D(u) du

+D(x) [* c(w)B(u)? du.
0

LY

In these formulas we have abbreviated A(x, ) and
B(x, ) to A(x) and B(x). Along the curves I, we have
A(x) =0 and C(x) = 1/B(x), so that the first integral
drops out and A, reduces to Ag(x,f) = —H(x)/B(x),
where H(x) is the positive integral

H(x) = J’x c(u)B(u)? du.
0

Then we have df/dx = — Bc(x)B(x)}/H(x) < 0. Simi-
larly, along the curves I'g, we have D(x) = 1/A(x) and
dfjdx = —r(x)A(x)*/H(x) < 0.

B(x,8)

-2.

F1G. 5. Locus of A(x, f) and B(x, §) for constant f.
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FI6. 6. Impossible Z-shape for I' , and I'g curves,

The picture which has evolved is this (see Fig. 7). Each
connected curve of the family of T, and/or T, divides
the strip 0 < x < [, 0 < f into an upper and a lower

Rp/R)| = RES RATIO=900
VRC //RsCs = FREQ RATIO=1.028

DougLas C. HitTLE and RiCHARD BisHop

part.In the band between two successive 'y thereis just
one I', curve and vice versa. Since these alternating
curves terminate on the vertical line at x = [, roots of
B(l, B) = Oare separated by roots of A(/, B} = O and vice
versa.

CONCLUSIONS

A significant improvement to the procedure for
finding the roots of the characteristic equation used in
calculating response factors has been developed. The
improvement eliminates the need for an extremely fine
step size when numerically searching for roots and
ensures that roots will not be missed. The new
procedure allows the calculation of response factors for
certain multilayered slabs which previously could only
be found with unrealistically small search increments.
Computational efficiency has been retained while
improving reliability.
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F1G. 7. T and [ as functions of x and f.
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UNE PROCEDURE DE RECHERCHE DES RACINES POUR LE CALCUL DES FLUX
THERMIQUES A TRAVERS DES PLAQUES A PLUSIEURS COUCHES

Résumé—Des “facteurs de réponse” sont les flux aux surfaces d’entrée et de sortie d’'une plaque multicouche
monodimensionnelle causés par des impulsions triangulaires de température appliquées alternativement aux
surfaces d’entrée et de sortie, en maintenant la surface opposée a une température constante. Des techniques
récentes pour trouver les facteurs de réponse passent par une recherche numérique des racines de I'’équation
caractéristique de la transformée de Laplace dela solution de'équation de la conduction thermique. Une fois
que ces pdles sont connus, le calcul des résidus est utilisé pour trouver la transformée inverse qui conduit aux
facteurs de réponse. Cet article examine le comportement de 1'équation caractéristique et des équations
associées et il présente une procédure améliorée de recherche des racines qui donne rapidement les facteurs de
réponse.

EINE VERBESSERTE METHODE ZUM AUFFINDEN VON LOSUNGEN BEI DER
INSTATIONAREN WARMELEITUNG IN VIELSCHICHTIGEN PLATTEN

Zusammenfassung— Der sogenannte Reaktionsfaktor ist die Warmestromdichte an derinneren und duBeren
Oberfliche einer eindimensionalen vielschichtigen Platte, die durch dreiecksformige Einheits-
temperaturspriinge an der inneren und duBeren Oberfliche hervorgerufen wird, wihrend man die
gegeniiberliegende Fliche auf konstanter Temperatudr hilt. Die meisten herkdmmlichen Methoden zum
Bestimmen von Reaktionsfaktoren erfordern numerisches Suchen der Wurzeln der charakteristischen
Gleichung der Laplace-transformierten Losung der Warmeleitungsgleichung. Wenn diese Polstellen bekannt
sind, wird die Residuenrechnung zur Ermittlung der inversen Transformierten angewendet, welche die
Reaktionsfaktoren enthilt. Die Verdfentlichung behandelt das Verhalten der charakteristischen Gleichung
und der zugehdrigen Beziehungen und gibt eine verbesserte Methode zum Auffinden der Losung an, mit
welcher Reaktionsfaktoren effizient berechnet werden kénnen.

YCOBEPIIEHCTBOBAHHAS MMPOIIEJYPA ONPEAEJEHUSA KOPHEH,
HCMOJIL3VEMAS NMPU PACYETE HEYCTAHOBHMBIIEIOCA TEIJIOBOIO
IMMOTOKA YEPE3 MHOIOCJIOMHLIE TTJIMThI

Aunnotaums—TaK Ha3jbiBaeMbIMH  “GaxkTOpaMH OTKAMKA™ SBIAIOTCA MNOTOKH Ha BHYTPEHHER H
BHEIHEN MOBEPXHOCTAX OZHOMEPHOil MHOrocioiHol naHTel, oOycnaBiaHBaeMblE EOMHHYHBIMH
TPEeyroAbHBIMH TEMNEPATYPHBIMH HMINYAbCAMH, MPHIATAeMbIMH IONEPEMEHHO K BHYTPCHHEH M
BHEIIHEI [TOBEPXHOCTAM, NpHYEM NPOTHBONONOKHASA MOBEPXHOCTL NOMNEPKHBACTCA NPH NOCTOSHHOI
Temnepatype. Hoseiilune MeToast onpeneneHus GakTOpoB OTKIAHKA BKJIIOHAIOT HHCICHHBIR MOMCK
KOpHeil XapakTepHCTHYECKOTO YpaBHeHHA Anf npeobpaloBaHHoro no Jlannacy peuleHus ypaBHeHHA
TensonposoanocTH. [Nocne onpeleneHits NOMIOCOB € NOMOLULIO MeTOJa BHIMETOB HaxonHT¢s obpaTHoe
npeobpa3oBaliie, KOTOpoe AaeT GpakTops! OTKAHKA. [IpoBeneH aHaNK3 noBeNeHHA XapaKTEPHCTHYECKOTO
ypaBHEHHS W JAPYrHX CBA3aHHLIX C HHM YDABHEHHH H NPEITOKEH YCOBEPUICHCTBOBAHHBI METOX
onpeneneHus KopHeil, KoTopslii n03801seT 3G(eKTHBHO PacCUHTHLIBATL (AaKTOPL! OTK/IHKA,





